
0740 -7459 / 23©2023 I EEE MAY/JUNE 2023 | IEEE SOFTWARE 15

Editor: Ciera Jaspan
Google
ciera@google.com

Editor: Collin Green
Google
colling@google.com

DEVELOPER PRODUCTIVITY
FOR HUMANS

WARD CUNNINGHAM INTRO-
DUCED the metaphor underlying the
term technical debt in a 1992 experi-
ence report, where he described how
his company incrementally extended
a piece of financial software:

Mature sections of the program
have been revised or rewritten
many times providing the consol-
idation that is key to understand-
ing and continued incremental
development. […] Although im-
mature code may work fine and
be completely acceptable to the
customer, excess quantities will
make a program unmasterable,
leading to extreme specializa-
tion of programmers and finally
an inflexible product. Shipping
first time code is like going into
debt. A little debt speeds devel-
opment so long as it is paid back
promptly with a rewrite. […]
The danger occurs when the debt
is not repaid. Every minute spent
on not-quite-right code counts
as interest on that debt. Entire
engineering organizations can be
brought to a stand-still under the

debt load of an unconsolidated
implementation […].1

A few things stand out about this origi-
nal use of the technical debt metaphor
as resonant with a human-centered ap-
proach to developer productivity2:

• It invokes the properties of hu-
mans (for example, the ability to
comprehend the product’s code)
as an important determinant of
software engineering (SWE) pro-
cess outcomes.

• It frames technical debt as aris-
ing mostly from nontechnical
(business and organizational)
factors.

• It focuses on the practical con-
sequences of technical debt for
engineering organizations rather
than merely the consequences
that exist in the code.

Cunningham’s example of tech-
nical debt in that 1992 report is
specific, but the metaphor is more
general and centers on decision mak-
ing and tradeoffs between the speed
of delivery and the quality of the
product. Over time, the technical
debt metaphor has been used and
misused in a wide variety of contexts

and to describe a wide variety of be-
haviors, processes, and SWE scenar-
ios. (For example, Cunningham did
not intend the technical debt meta-
phor to excuse engineers writing bad
code.3) As a result, the term itself—
technical debt—can be difficult to
understand and interpret.

Since 2018, our quarterly engi-
neering satisfaction survey has asked
engineers to indicate the extent to
which they are “hindered by un-
necessary complexity and technical
debt,” and the percentage of engi-
neers who feel hindered is substan-
tial. Early on, our engineering leads
wanted to know more: What is the
root cause of technical debt? How
can we fix it? When engineers say
technical debt is slowing them down,
what do they even mean? Is “techni-
cal debt” just a catch-all term for
anything an engineer dislikes? These
questions motivated us to systemati-
cally investigate what technical debt
means to engineers, how we might
measure it, and how we might better
manage technical debt. We wanted
to deeply understand technical debt
as engineers chose to use the term,
rather than defining it for them, and
to work on addressing technical debt
from there.

Defining, Measuring,
and Managing
Technical Debt
Ciera Jaspan and Collin Green

Digital Object Identifier 10.1109/MS.2023.3242137
Date of current version: 18 April 2023

Editor: Ciera Jaspan
Google
ciera@google.com

Editor: Collin Green
Google
colling@google.com

DEVELOPER PRODUCTIVITY
FOR HUMANS

https://orcid.org/0000-0003-4500-1392
https://orcid.org/0000-0003-1307-3869
mailto:colling@google.com

DEVELOPER PRODUCTIVITY FOR HUMANS

16 IEEE SOFTWARE | W W W.COMPUTER.ORG/SOFT WARE | @IEEESOFT WARE

Defining Technical Debt
We took an empirical approach to
understand what engineers mean
when they refer to technical debt. We
started by interviewing subject matter
experts at the company, focusing our
discussions to generate options for
two survey questions: one asked engi-
neers about the underlying causes
of the technical debt they encoun-
tered, and the other asked engineers
what mitigations would be appropri-
ate to fix this debt. We included these
questions in the next round of our
quarterly engineering survey and gave
engineers the option to select multiple
root causes and multiple mitigations.
Most engineers selected several op-
tions in response to each of the items.
We then performed a factor analysis
to discover patterns in the responses,
and we reran the survey the next
quarter with refined response options,
including an “other” response option
to allow engineers to write in descrip-
tions. We did a qualitative analy-
sis of the descriptions in the “other”
bucket, included novel concepts in
our list, and iterated until we hit the
point where <2% of the engineers se-
lected “other.” This provided us with
a collectively exhaustive and mutually
exclusive list of 10 categories of tech-
nical debt:

• Migration is needed or in prog-
ress: This may be motivated by
the need to scale, due to man-
dates, to reduce dependencies, or
to avoid deprecated technology.

• Documentation on project and
application programming in-
terfaces (APIs): Information on
how your project works is hard
to find, missing or incomplete,
or may include documentation
on APIs or inherited code.

• Testing: Poor test quality or
coverage, such as missing tests

or poor test data, results in
fragility, flaky tests, or lots of
rollbacks.

• Code quality: Product architec-
ture or code within a project was
not well designed. It may have
been rushed or a prototype/demo.

• Dead and/or abandoned code:
Code/features/projects were
replaced or superseded but not
removed.

• Code degradation: The code
base has degraded or not kept
up with changing standards
over time. The code may be in
maintenance mode, in need of
refactoring or updates.

• Team lacks necessary exper-
tise: This may be due to staffing
gaps and turnover or inherited
orphaned code/projects.

• Dependencies: Dependencies are
unstable, rapidly changing, or
trigger rollbacks.

• Migration was poorly executed
or abandoned: This may have
resulted in maintaining two
versions.

• Release process: The rollout and
monitoring of production needs
to be updated, migrated, or
maintained.

We’ve continued to ask engineers
(every quarter for the last four years)
about which of these categories of
technical debt have hindered their
productivity in the previous quarter.
Defying some expectations, engineers
do not select all of them! (Fewer than
0.01% of engineers select all of the
options.) In fact, about three quarters
of engineers select three or fewer cate-
gories. It’s worth noting that our sur-
vey does not ask engineers “Which
forms of technical debt did you en-
counter?” but only “Which forms of
technical debt have hindered your
productivity?” It’s well understood

that all code has some technical debt;
moreover, taking on technical debt
prudently and deliberately can be a
correct engineering choice.4 Engi-
neers may run into more of these dur-
ing the course of a quarter, but their
productivity may not be substantially
hindered in all cases.

The preceding categories of techni-
cal debt have been shown in the order
of most to least frequently reported as
a hindrance by Google engineers in
our latest quarter. We don’t expect this
ordering to generalize to other compa-
nies as the ordering probably says as
much about the type of company and
the tools and infrastructure available
to engineers as it does the state of the
code base. For example, Google en-
gineers regularly cite migrations as a
hindrance, but large-scale migrations
are only attempted at all because of
Google’s monolithic repository and
dependency system;5 other companies
may find that a large-scale migration
is so impossible that it is not even at-
tempted. A fresh start-up might have
few problems with dead/abandoned
code or code degradation but many
hindrances due to immature testing
and release processes. While we do
expect there to be differences across
companies in how much engineers are
hindered by these categories, we be-
lieve the list itself is generalizable.

Measuring Technical Debt
Our quarterly engineering survey
enables us to measure the rate at
which engineers encounter and are
hindered by each type of technical
debt, and this information has been
particularly useful when we slice our
data for particular product areas,
code bases, or types of development.
For example, we’ve found that engi-
neers working on machine learning
systems face different types of techni-
cal debt when compared to engineers

DEVELOPER PRODUCTIVITY FOR HUMANS

 MAY/JUNE 2023 | IEEE SOFTWARE 17

who build and maintain back-end
services. Slicing this data allows us
to target technical debt interventions
based on the toolchain that engineers
are working in or to target specific
areas of the company. Similarly, slic-
ing the data along organizational
lines allows directors to track their
progress as they experiment with new
initiatives to reduce technical debt.

However, we find quarterly sur-
veys are limited in their statistical
and persuasive power. Each quarter
we invite only one third of engineers,
and only around one third of them
choose to respond. Thus, a team of
100 engineers might yield only nine
or 10 survey responses, resulting in
wide confidence intervals. This can
lead to skepticism around generaliz-
ability and a desire to see corrobo-
rating, objective metrics.

Another problem is that survey-
based measures are a lagging indica-
tor of technical debt: it only emerges
in our survey responses once it has
become severe enough to hinder en-
gineers. Accordingly, we sought to
develop metrics based on engineer-
ing log data that capture the pres-
ence of technical debt of different
types, too. Our goal was then to fig-
ure out if there are any metrics we
can extract from the code or devel-
opment process that would indicate
technical debt was forming before
it became a significant hindrance
to developer productivity. We ran a
small analysis to see if we could pull
this off with some of the metrics we
happened to have already.

We focused on three of the 10
types of technical debt: code degra-
dation, teams lacking expertise, and
migrations being needed or in prog-
ress. We selected these because they
would require very different types of
metrics, and we felt that we might al-
ready have data that would serve as

accurate indicators of their presence.
For example, we hypothesized that
many “TODOs” in the code might in-
dicate code degradation, that a large
proportion of code written by some-
one no longer on the team might indi-
cate that the team lacks expertise, and
that many bugs referencing words like
“migration” or “deprecation” should
indicate a migration is needed.

For these three forms of techni-
cal debt, we explored 117 metrics
that were proposed as indicators of
one of these forms of technical debt.
In our initial analysis, we used a lin-
ear regression to determine whether
each metric could predict an engi-
neer’s perceptions of technical debt.
We then put all of the metrics into
a random forest model to see if the
metrics in combination could predict
developer’s perceptions for each of
the three types of technical debt.

The results were disappointing, to
say the least. No single metric pre-
dicted reports of technical debt from
engineers; our linear regression mod-
els predicted less than 1% of the vari-
ance in survey responses. The random
forest models fared better, but they
had high precision (>80%) and low
recall (10%–25%). That is, these
models could identify parts of the
code base where a focused interven-
tion could reduce technical debt, but
they were also going to miss many
parts of the code base where engineers
would identify significant issues.

It is quite possible that better
technical debt indicator metrics do
exist for some forms of technical
debt. We only explored objective
metrics for three types of technical
debt, and we only sought to use ex-
isting metrics, rather than attempt-
ing to create new metrics that might
better capture the underlying con-
cepts from the survey.

However, it’s also possible that
such metrics don’t exist for other
types of technical debt because they
are not about the present state of a
system, but a relation between the
system’s present state and some un-
implemented ideal state. An engi-
neer’s judgments about technical
debt concern both the present state
and the possible state. The possible
states of the world are something
that mathematical models cannot
incorporate without the modeler’s
direct intervention. For example,
the fact that a project’s code base
consists entirely of code written in
Python 2 is not technical debt in a
world where there is no loss of func-
tionality compared to another lan-
guage or version or outside pressure
to migrate. However, in a world
where Python 3 is a preferred or re-
quired alternative, that same corpus
of Python 2 constitutes a needed
migration. The present state of the
world—from the perspective of a
model—is identical in these two in-
stances, but the possible world has

An engineer’s judgments about
technical debt concern both the

present state and the possible state.

DEVELOPER PRODUCTIVITY FOR HUMANS

18 IEEE SOFTWARE | W W W.COMPUTER.ORG/SOFT WARE | @IEEESOFT WARE

changed. Humans consider the pos-
sible world in their judgments of
technical debt. If a model were to in-
corporate explicit rules that capture
aspects of the possible world (for
example, if a model were designed
to count every file in Python 2 as
technical debt because the human
modeler knows Python 3 is an al-
ternative), then the change would be
detectable to the model. If we could
capture this judgment as it evolves, it
could form the basis for better mea-
surements of technical debt.

As it stands, this situation points
once again to the key role that human
cognition and reasoning play in driv-
ing developer productivity: conceiv-
ing of the ideal state of a system and
using that imagined state as a bench-
mark against which the current state
can be judged might well be central
to effective detection and comprehen-
sion of technical debt, which are pre-
requisite to effective management of
technical debt. (Not coincidentally,
Ward Cunningham was inspired to
use financial debt as a metaphor in
explaining software development af-
ter reading Metaphors We Live By,
which argues that metaphor is a cog-
nitive tool that humans use to under-
stand and reason about complex or
abstract concepts.3,6)

Managing Technical Debt
While we haven’t been able to find
leading indicators of technical debt
thus far, we can continue to measure
technical debt with our survey and
help to identify teams that struggle
with managing technical debt of dif-
ferent types. To that end, we also
added the following questions to our
engineering survey:

• To what extent has your team
deliberately incurred technical
debt in the past three months?

• How often do you feel that in-
curring technical debt was the
right decision?

• How much did your team invest
in reducing existing technical
debt and maintaining your code?

• How well does your team’s
process for managing technical
debt work?

Combined with the survey items
about the types of technical debt that
are causing productivity hindrances,
these questions enable the identifi-
cation of teams that are struggling,
reveal the type(s) of technical debt
they are struggling with, and indi-
cate whether they are incurring too
much debt initially or whether they
are not adequately paying down their
existing debt. These are useful data,
especially when teams can leverage
them under guidance from experts on
how to manage their technical debt.
Fortunately, we have such experts
at Google. Motivated in part by our
early findings on technical debt, an
interested community within Google
formed a coalition to help engineers,
managers, and leaders systematically
manage and address technical debt
within their teams through educa-
tion, case studies, processes, artifacts,
incentives, and tools. The coalition’s
efforts have included the following:

• Creating a technical debt man-
agement framework to help
teams establish good practices.
The framework includes ways
to inventory technical debt, as-
sess the impact of technical debt
management practices, define
roles for individuals to advance
practices, and adopt measure-
ment strategies and tools.

• Creating a technical debt
management maturity model
and accompanying technical

debt maturity assessment that
evaluates and characterizes
an organization’s technical
debt management process and
helps grow its capabilities by
guiding it to a relevant set of
well-established practices for
leads, managers, and indi-
vidual contributors. The model
 characterizes a team’s matu-
rity at one of four levels (listed
here from least to most mature):
⚪ Teams with a reactive approach

have no real processes for
managing technical debt (even
if they do occasionally make a
focused effort to eliminate it,
for example, through a “fixit”).

⚪ Teams with a proactive ap-
proach deliberately identify
and track technical debt and
make decisions about its ur-
gency and importance relative
to other work.

⚪ Teams with a strategic approach
have a proactive approach to
managing technical debt (as
in the preceding level) but go
further: designating specific
champions to improve planning
and decision making around
technical debt and to identify
and address root causes.

⚪ Teams with a structural ap-
proach are strategic (as in the
preceding level) and also take
steps to optimize technical
debt management locally—
embedding technical debt con-
siderations into the developer
workflow—and standardize
how it is handled across a
larger organization.

• Organizing classroom instruction
and self-guided courses to evan-
gelize best practices and com-
munity forums to drive continual
engagement and sharing of re-
sources. This work also includes a

DEVELOPER PRODUCTIVITY FOR HUMANS

 MAY/JUNE 2023 | IEEE SOFTWARE 19

technical talk series with live (and
recorded) sessions from internal
and external speakers.

• Tooling that supports the identifi-
cation and management of techni-
cal debt (for example, indicators
of poor test coverage, stale docu-
mentation, and deprecated depen-
dencies). While these metrics may
not be perfect indicators, they can
allow teams who already believe
they have a problem to track their
progress toward fixing it.

Overall, our emphasis on techni-
cal debt reduction has resulted in a
substantial drop in the percentage of
engineers who report that their produc-
tivity is being extremely to moderately
hindered by technical debt or overly
complicated code in their project. The
majority of Google engineers now feel
they are only “slightly hindered” or
“not at all hindered” by technical debt,
according to our survey. This is a sub-
stantial change and, in fact, is the larg-
est trend shift we have seen in five years
of running the survey.

I n the last four years, we’ve made
a concerted effort to better de-
fine, measure, and manage tech-

nical debt at Google, and it seems
like that effort has been fruitful.
That’s not to say we have no techni-
cal debt at Google (cue hearty laugh-
ter from Google engineers at the very
thought), but zero technical debt
is not the goal anyway. We seem to
have less technical debt, and—more
importantly—fewer instances where
engineers are hindered in their work
by technical debt. Technical debt
isn’t unequivocally a bad thing, after
all. Just like financial debt, technical
debt is one component of a strategy
for trading off velocity and (some
form of) quality or completeness.

Just as one can thoughtfully and
responsibly use financial debt to ac-
complish goals, one can use techni-
cal debt to do so, but it is critical to
do so thoughtfully and responsibly.
This isn’t a new idea. This idea is cen-
tral to Cunningham’s original meta-
phor, and others have articulated
the insight well. For example, Mar-
tin Fowler described technical debt
as falling into four categories, based
on whether it is deliberate versus in-
advertent and whether it is prudent
versus reckless.4 Deliberate, prudent
technical debt is nothing to fear, and
its presence reflects the practicality of
how one must develop systems in the
real world. Deliberate, prudent tech-
nical debt results from effective pro-
cesses for managing technical debt
(ideally, reflecting something like
the structural approach in the tech-
nical debt maturity model described
previously). This view is compatible
with Cunningham’s original meta-
phor and intent and particularly
with the aspects of the metaphor
that connect to software develop-
ment as an activity that is shaped

by and influences human behavior,
processes, and organizations.

References
1. W. Cunningham, “The WyCash port-

folio management system,” in Proc.

OOPSLA Exp. Rep., Dec. 1992.

[Online]. Available: http://c2.com/

doc/oopsla92.html

2. C. Jaspan and C. Green, “A human-

centered approach to developer

productivity,” IEEE Softw., vol. 40,

no. 1, pp. 23–28, Jan./Feb. 2023, doi:

10.1109/MS.2022.3212165.

3. W. Cunningham, Debt Metaphor.

(2009). [Online Video]. Avail-

able: https://www.youtube.com/

watch?v=pqeJFYwnkjE

4. M. Fowler. “TechnicalDebtQuad-

rant.” Martinfowler.com. Accessed:

Jan. 31, 2023. [Online]. Avail-

able: https://martinfowler.com/bliki/

TechnicalDebtQuadrant.html

5. T. Winters, T. Manshreck, and H.

Wright, Software Engineering at Google.

Sebastopol, CA, USA: O’Reilly, 2020.

6. G. Lakoff and M. Johnson,

 Metaphors We Live By. Chicago, IL,

USA: Univ. of Chicago Press, 1980.

DEVELOPER PRODUCTIVITY FOR HUMANS

A
B

O
U

T
 T

H
E

 A
U

T
H

O
R

S

CIERA JASPAN is the software engineering lead for the Engineer-

ing Productivity Research team at Google, Mountain View, CA

94043 USA. Contact her at https://research.google/people/

CieraJaspan/ or ciera@google.com.

COLLIN GREEN is the user experience research lead for the En-

gineering Productivity Research team at Google, Mountain View, CA

94043 USA. Contact him at https://research.google/people/107023/

or colling@google.com.

http://c2.com/doc/oopsla92.html
http://c2.com/doc/oopsla92.html
https://www.youtube.com/watch?v=pqeJFYwnkjE
https://www.youtube.com/watch?v=pqeJFYwnkjE
https://martinfowler.com/bliki/TechnicalDebtQuadrant.html
https://martinfowler.com/bliki/TechnicalDebtQuadrant.html
https://research.google/people/CieraJaspan/
https://research.google/people/CieraJaspan/
https://research.google/people/107023/
mailto:colling@google.com

	015_40ms03-developerprod-3242137

